

MS2N Synchronous servo motors

intelligent | powerful | flexible

Future-proof with power density, functionality and availability

More torque, higher rotational speeds, the practical single-cable connection, and an extensive option program: Rexroth's MS2N generation of motors connects ultimate dynamics with compact dimensions and the best of energy efficiency. Offering a selection of rotors with lower and medium inertia is available for optimal mass adaptation. The MS2N motors become a data source for intelligent solutions in the Industry 4.0 environment.

The new generation of servo motors

Rexroth's MS2N range of motors with more than 50 types, covers a maximum torque of up to 360 Nm and maximum rotational speeds of up to 9,000 rpm.

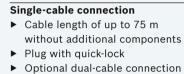
A high power density is achieved through optimized electromagnetic design and motor construction. With a finely graduated range of torques and rotational speeds, application-oriented encoder options, and optional single-cable connection, the motors flexibly meet the diverse requirements of modern automation. Forced ventilation and water cooling open up new areas of performance.

Intelligence in the system

In the MS2N product line, intelligence progresses all the way up to the motor by storing the individual readings of every single motor as well as the saturation and temperature data into the motor data memory.

IndraDrive drive controllers process these values in real time, increasing the torque precision significantly and reducing the tolerance range during operation to a fraction of the values that had been standard up to now. Thus the servo motor can be used as a reliable sensor and as a data source. In this way, applications within the Industry 4.0 environment can be realized cost-effectively and without additional components.

Maximum safety in design and operation

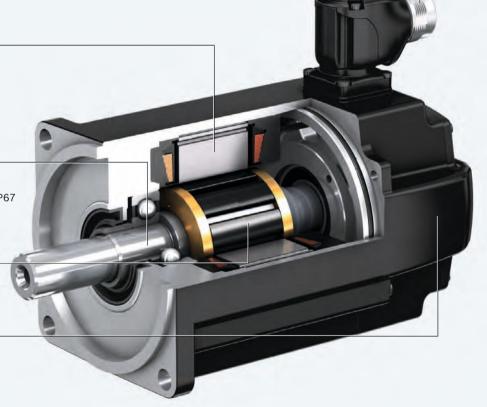

The MS2N motor model in the IndraSize engineering tool enables simple, fast and safe drive configuration that corresponds exactly to real operation. In this way, mechanical engineers can optimal design drives for their application. The integrated encoders with up to SIL3 PLe ensure maximum safety for SafeMotion applications.

More than 50 motor types in 6 sizes with up to 5 lengths and 3 cooling types

Powerful

- ► Compact motors
- ► High torque density
- ► Broader speed range
- ► High energy efficiency
- Optional forced ventilation and water cooling

Flexible configuration

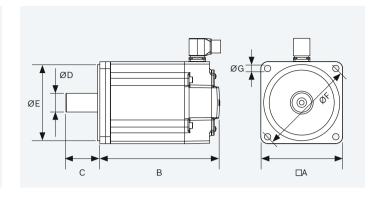

- ► Smooth shaft, keyway, shaft seal
- ▶ Degree of protection IP64, IP65 or IP67
- ► Energy-saving holding brake
- ► Increased flange accuracy
- ► Many additional options

Two motor designs

- ► Low rotor inertia for all sizes
- ► Medium rotor inertia beginning with MS2N06

Encoder types

- ► Four performance levels
- ► Functional safety up to SIL3 PLe
- ► Singleturn/Multiturn
- ► Motor data memory



Technical Data

				Torque [Nm]					Current [A]			Speed [min ⁻¹]	Moment o [kgn
Тур	e	$M_{0.60K}$	M _{0 100K}	$M_{0 Fan}$	M _{0 Water}	M_{Max}	I _{0 60K}	I _{0 100K}	I _{0 Fan}	I _{0 Water}	I _{Max}	n _{Max}	without brake
03	MS2N03-B0BY	0.73	0.90			3.75	1.31	1.61			7.25	9000	0.000023
	MS2N03-D0BY	1.15	1.45	_	-	7.40	2.07	2.60	-	_	14.5	9000	0.000037
04	MS2N04-B0BN	1.75	2.15			6.4	1.11	1.36			4.9	6000	0.00007
	MS2N04-B0BT	1.75	2.13			0.4	2.20	2.70			9.8	6000	0.00007
	MS2N04-C0BN	2.80	3.50	_	_	13.0	1.78	2.24	_	_	9.7	6000	0.00011
	MS2N04-C0BT						3.11	3.90	_		17.3	6000	
	MS2N04-D0BH MS2N04-D0BQ	3.85	4.65			19.7	1.61 2.86	1.96	_		9.7 17.3	4000 6000	0.00016
05	MS2N04-D0BQ MS2N05-B0BN						2.86	3.48 2.75			8.4	6000	
05	MS2N05-B0BT	3.75	4.45		-	11.5	4.55	5.45		-	16.8	6000	- 0.00017
	MS2N05-C0BN			- -			3.53	4.16	-		15.1	6000	
	MS2N05-C0BT	6.10	7.15			22.6	7.10	8.35			30.2	6000	0.00029
	MS2N05-D0BH	7.00	0.05			0.4.0	3.05	3.63	-		15.2	4000	0.00045
	MS2N05-D0BR	7.90	9.35			34.0	6.05	7.20			30.3	6000	0.00040
06	MS2N06-B1BN	3.25	3.6			10.2	2.22	2.47			7.8	6000	0.00048
	MS2N06-C0BN	6.0	7.1			17.3	3.75	4.50			12.8	6000	0.00039
	MS2N06-C0BT						7.50	9.00			25.5	6000	
	MS2N06-D1BN	9.0	11.1	_		41.8	5.05	6.25	_	_	25.5	6000	0.00140
	MS2N06-D0BN	9.7	11.9			34.8	6.10	7.55	_		25.4	6000	0.00065
	MS2N06-D0BR						7.85	9.75	_		32.7	6000	
	MS2N06-E0BH MS2N06-E0BR	13.0	16.3			53.4	5.4	6.80	_		25.4	4000	0.00089
07	MS2N06-E0BR MS2N07-B1BN	7.4	8.2	_	_	22.8	10.9 4.25	13.7 4.74		_	50.8 14.8	6000	0.00197
07	MS2N07-B1BN	7.4	0.2			22.0	6.6	8.35	10.4	14.2	29.5	6000	0.00197
	MS2N07-C1BR	11.5	14.5	18.0	25.0	46.0	9.6	12.1	14.9	20.8	42.7	6000	0.00305
	MS2N07-C0BN						6.9	8.8	11.0	15.8	24.8	6000	
	MS2N07-C0BQ	12.8	16.0	19.8	26.6	38.8	10.1	12.9	15.8	22.3	36.4	6000	0.00120
	MS2N07-D1BH	18.9	22.0	21.0	50 F	02.5	7.8	9.9	12.9	21.1	42.7	4000	0.00529
	MS2N07-D1BN	10.9	23.8	31.0	50.5	92.5	9.9	12.5	16.3	26.7	54.1	6000	0.00529
	MS2N07-D0BH						8.55	11.1	14.1	22.8	36.4	4000	
	MS2N07-D0BN	22.0	28.2	35.5	55.0	79.7	11.6	15.0	19.1	31.4	49.5	6000	0.00210
	MS2N07-D0BR						17.1	22.3	28.2	45.8	72.7	6000	
	MS2N07-E1BH	25.8	32.2	43.5	76.5	140.0	9.0	11.3	15.2	26.6	54.1	4000	0.00752
	MS2N07-E1BN MS2N07-E0BH						14.1 10.35	17.7 13.7	23.9 17.9	42.1 31.5	85.4 49.5	6000 4000	
	MS2N07-E0BN	29.2	38.2	49.5	83.0	119.5	15.1	20.0	26.2	46.0	72.7	6000	0.00300
	MS2N07-E0BN	20.2	00.2	73.3	00.0	110.0	19.1	25.3	33.3	58.3	92.3	6000	0.0000
10	MS2N10-B1BQ	15.6	16.7	_	-	41.3	13.1	14.2	-	-	41.3	6000	0.00520
	MS2N10-C1BH			40.0	40.0		11.1	12.8	16.7	19.6	40.9	4000	
	MS2N10-C1BN	27.3	31.0	40.0	48.0	86.5	16.5	19.0	24.7	29.9	60.8	6000	0.00920
	MS2N10-C0BH	30.2	34.0	43.2	51.7	76.8	12.6	14.5	18.8	23.0	38.5	4000	0.00480
	MS2N10-C0BN	30.2	34.0	43.2	31.7	70.0	16.8	19.3	25.1	30.8	51.3	6000	0.00460
	MS2N10-D1BF	47.2	56.0	78.0	101.0	174.0	14.3	17.2	24.2	30.8	60.7	3000	0.01710
	MS2N10-D1BN			. 5.0			28.6	34.3	48.5	63.3	121.5	6000	
	MS2N10-D0BH	51.0 60.5	82.4	107.5	155.0	19.1	23.1	32.4	43.7	70.0	4000	- 0.00810	
	MS2N10-D0BN MS2N10-E1BF						28.2 17.1	34.1 20.5	48.0	64.7 44.2	102.5 81.0	3000	
	MS2N10-E1BF MS2N10-E1BN	64.0	76.0	113.0	159.0	266.0	34.2	41.0	30.8 61.7	88.0	162.0	6000	0.02500
	MS2N10-E1BN						25.0	31.0	46.1	65.4	102.5	4000	
	MS2N10-E0BN	67.7	82.5	119.0	162.0	234.0	34.5	42.8	62.9	90.0	140.0	6000	- 0.01140
	MS2N10-F1BD	70 -	06 -	4.4= 5	0000	202.2	15.9	19.5	29.5	42.8	81.0	2000	0.00000
	MS2N10-F1BH	79.5	96.5	145.0	209.0	360.0	31.8	38.9	58.6	86.0	162.0	4000	0.03290
	MS2N10-F0BD	95.0	102.0	1/0 5	214.0	212.0	15.8	19.5	28.8	43.3	70.0	2000	0.01470
	MS2N10-F0BH	85.0	103.0	148.5	214.0	313.0	32.0	39.4	58.6	87.5	140.0	4000	0.01470

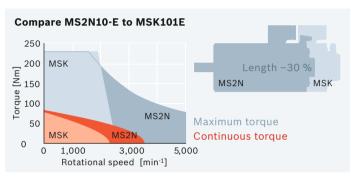
f inertia

Mass[kg]

1 ²]		[mm]											Self-cooling	
	Α			В			D	С	E	F	G			
with brake	Flange	Encoder "A" length	Encoder "B/C" length	Encoder "D" length	Brake length	Forced ventilation	Shaft diameter	Shaft length	Centering collar	Bolt circle	Mounting hole	without brake	with brake	
0.000030	- 58	148 188	+15	-	+29	_	9	20 23	- 40	63	4.5	2.0	1.8 2.4	
0.000044		147					11					2.7	3.4	
0.00016	82	179	179 +15	-	+32.5	-	14	30	50	95	6.6	3.7	4.4	
0.00020		211										4.7	5.4	
0.00028		170	_ +18 _	-	+30	-	19	40	95	115	9	4.0	5.1	
0.00040	98	206										5.9	7.0	
0.00051		242										7.3	8.4	
0.00059		164	4 +0	+18	+37	-	24	50	95	130	9	5.1	6.2	
0.00050		184										6.4	7.4	
0.00154	_ 116	224										9.0	10.5	
0.00103		264										11.5	13.0	
0.00223		176				-						9.5	11.5	
0.00331		205										12.0	14.0	
0.00146														
0.00570														
0.00251	140	263	+0	+16	+54	+121	32	58	130	165	11	17.5	20.0	
0.00793														
0.00341		321										23.0	26.0	
0.00561		194			+51							17.5	21	
0.01067		238	- +0	+0	+60	+98	38	80	180	215	14	24.0	29.0	
0.00627												23.5	28.5	
0,01857		296										36.0	41.0	
0.00957	. 196											34.0	39.0	
0.02770	196	354										47.0	54.0	
0.01410												45.0	52.0	
0.03560		412										59.0	66.0	
0.01740												55.0	62.0	

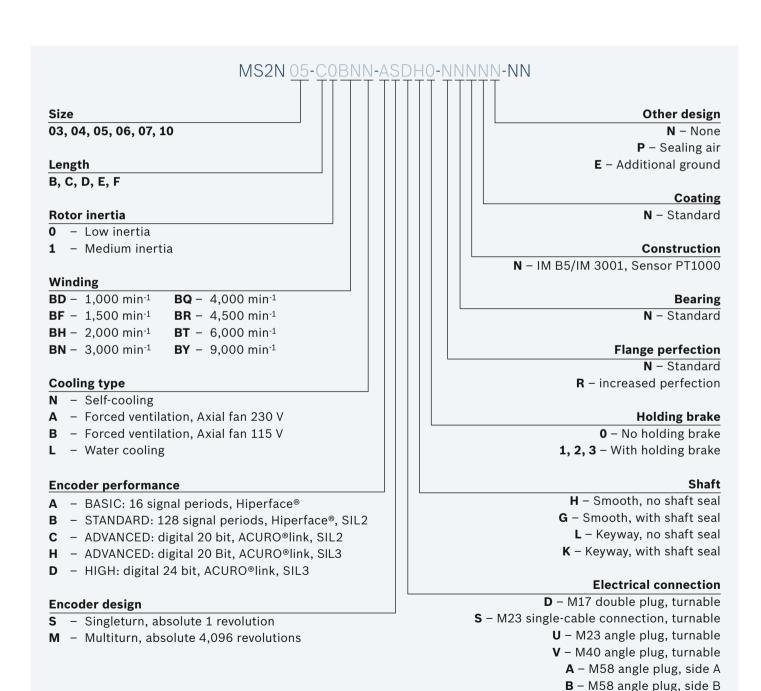
Dimensions

More torque and higher rotational speeds


Short coil heads and high-performance motors enable compact dimensions with minimal power loss. This leads to a significant improvement in energy efficiency and reduces operating costs over the long term. The available field weakening operation in conjunction with IndraDrive drive controllers extends the usable torque speed range beyond the voltage limit.

Connection technology

Whether conventional cabling with compact round connectors or a modern single-cable connection, MS2N offers the practical diversity for less installation work and space requirement. The size MS2N10 is also available with terminal box. All plugs are equipped with comfortable quick locking and can be rotated up to plug size M40.


Self-cooled, force-ventilated or water-cooled

The motors are optionally available with integrated fans or water cooling starting at size MS2N07. The nominal torque is increased significantly in the same construction size. All fan motors offer degree of protection IP65, an integrated temperature sensor with certified intrinsic safety as well as optionally 115 V or 230 V connection voltage.

Water-cooled motors offer even more increased continuous torque and highest power density, for new machine concepts with minimum space and high requirements on effective heat dissipation. The robust design of the entire motor cooling in stainless steel allows the simple and reliable integration into a wide range of cooling circuits.

Type Code

Available options and technical data: see product documentation

T - Terminal box, size 1C - Terminal box, size 2

The Drive & Control Company

Bosch Rexroth AG

Bgm.-Dr.-Nebel-Str. 2 97816 Lohr, Germany www.boschrexroth.com

Find your local contact person here:

www.boschrexroth.com/contact

Further information:

www.boschrexroth.com/ms2n

